Article Alert: Risk thresholds for frontier AI
Authors: Leonie Koessler, Jonas Schuett, and Markus Anderljung
Abstract: Frontier artificial intelligence (AI) systems could pose increasing risks to public safety and security. But what level of risk is acceptable? One increasingly popular approach is to define capability thresholds, which describe AI capabilities beyond which an AI system is deemed to pose too much risk. A more direct approach is to define risk thresholds that simply state how much risk would be too much. For instance, they might state that the likelihood of cybercriminals using an AI system to cause X amount of economic damage must not increase by more than Y percentage points. The main upside of risk thresholds is that they are more principled than capability thresholds, but the main downside is that they are more difficult to evaluate reliably. For this reason, we currently recommend that companies (1) define risk thresholds to provide a principled foundation for their decision-making, (2) use these risk thresholds to help set capability thresholds, and then (3) primarily rely on capability thresholds to make their decisions. Regulators should also explore the area because, ultimately, they are the most legitimate actors to define risk thresholds. If AI risk estimates become more reliable, risk thresholds should arguably play an increasingly direct role in decision-making.
Please click on this link to read the full article.
Image credit: Image by mamewmy on Freepik